Distribution of inorganic arsenic and methylated arsenic in marine organisms

Toshikazu Kaise,*† Ken'ichi Hanaoka,‡ Shoji Tagawa,‡ Teruhisa Hirayama§ and Shozo Fukui§

*Kanagawa Prefectural Public Health Laboratories, Nakao-cho 52-2, Asahi-ku, Yokohama 241, Japan, ‡Shimonoseki University of Fisheries, Yoshimi, Shimonoseki 759-65, Japan and §Kyoto Pharmaceutical University Misasagi, Yamashina-ku, Kyoto 607, Japan

Received 1 August 1988 Accepted 21 August 1988

Inorganic arsenic and methylated arsenic compounds in 60 specimens of marine organisms were investigated by hydride generation derivatization and cold-trap gas chromatography—mass spectrometry (GC MS). Chloroform—methanol extracts from seaweeds, shellfish, fish, crustaceans and other marine organisms were separated into water-soluble and lipid-soluble fractions. The arsenic compounds in each fraction were identified and analysed as arsine, methylarsine, dimethylarsine and trimethylarsine.

Trimethylarsenic compounds were distributed mainly in the water-soluble fraction of muscle of carnivorous gastropods, crustaceans and fish. The amounts of dimethylated arsenic compounds were found to be larger than that of trimethylated arsenic in the lipid-soluble fraction of fish viscera. Dimethylated arsenic compounds were distributed in the water-soluble fraction of Phaeophyceae.

Keywords: Arsenic, arsine, methylarsine, dimethylarsine, trimethylarsine, arsenobetaine, trimethylarsine oxide, marine organisms, gas chromatography mass spectrometry (GC MS)

INTRODUCTION

High levels of arsenicals are observed in marine organisms as the water-soluble and the lipid-soluble organoarsenic compounds.

Arsenobetaine [(CH₃)₃As⁺CH₂COO⁻], which is one of the water-soluble organoarsenicals, has been found widely distributed in marine animals and was

† Author to whom correspondence should be addressed.

considered to be the final metabolite in arsenic circulation in marine ecosystems. Recently, these arsenic metabolites have been studied in relation to the dietary habits of marine animals.¹

It is important to elucidate the chemical structure of organoarsenic compounds in marine organisms in order to investigate the circulation of arsenic in marine ecosystems. But in most cases, it does require complicated techniques and laborious purification for the identification of these organoarsenicals in marine organisms.

Several arsenic compounds are converted to the corresponding arsines by reduction with sodium borohydride.² It was known that dimethylarsine and trimethylarsine were released from dimethylated and trimethylated arsenic compounds, respectively, in marine animals and seaweeds by borohydride reduction after alkaline digestion.³ We have established a method for the separation and identification of inorganic and methylated arsines using a gaschromatography mass spectrometer equipped with an arsine generation system.⁴

In this paper we report the distribution of inorganic and methylated arsenicals and total arsenic in 60 specimens of marine organisms, i.e. plankton, scaweeds, gastropods (plankton-feeding herbivorous and carnivorous), crustaceans (carnivorous), fish (plankton-feeding, herbivorous and carnivorous), and other marine animals.

The fractions were separated into the muscle and viscera parts in marine animals (fish and shellfishes), and all samples were further separated into water-soluble and lipid-soluble fractions by solvent distribution with chloroform, methanol and water systems.

The arsenical specimens in all fractions were determined as arsine and methylated arsines.

MATERIALS AND METHODS

Preparation of samples

Many specimens were collected on the coast of the Miura Peninsula in Kanagawa Prefecture and the coast of Shimonoseki in Yamaguchi Prefecture in Japan from March to October 1987, and a portion of samples was obtained from a market. Each fish and shellfish was dissected into muscle and viscera. Other biological samples were extracted by the appropriate method.

Extraction

Each tissue (5-10 g) was weighed and extracted three times with a mixture of chloroform and methanol (2:1, $20-40 \text{ cm}^3$) using a homogenizer. After centrifugation, an aliquot of supernatant was transfered into a separatory funnel and shaken with water (one-quarter of the volume of the supernatant). The water-soluble and lipid-soluble fractions were obtained from the upper layer and lower layer, respectively.

Alkaline digestion

Each fraction (1 cm³) was transferred separately into polymethylenepentene tubes and the aqueous and organic solvent respectively were evaporated to near-dryness under a nitrogen stream. The residues were dissolved in 0.5 cm³ -1 cm³ of water or methanol, and 10 cm³ of 2 mol dm⁻³ sodium hydroxide solution was then added to each, the top of the tube was covered with Parafilm. After heating in a water bath at 85 °C for 3 h, the aqueous solution was neutralized with dilute hydrochloric acid and made up to a volume of 20 cm³ with water.

Arsenic analysis

Total arsenic

The complete biological sample (1 g) was digested with 10 cm³ of nitric acid (61% w/w) on a hot plate at below 100°C until the evolution of brown humes ceased. After cooling, a mixture of 5 cm³ of nitric acid, 3 cm³ of sulphuric acid (97% w/w) and 5 cm³ of perchloric acid (60% w/w) was added and the mixture was heated until dense fumes of sulphur trioxide appeared. After cooling, solutions were diluted with water (20 cm³) and neutralized with dilute ammonium hydroxide. The degraded solution was transferred in-

to a 100 cm³ volumetric flask, 2 cm³ of 36% (w/w) hydrochloric acid, 4 cm³ of 20% (w/w) potassium iodide and 4 cm³ of 20% (w/w) ascorbic acid were added to the solution, and the solution was made up to 100 cm³ with water. Arsenic was determined by reduction of arsenic to arsine with the fully automated continuous arsine generation system using sodium borohydride and an atomic absorption spectrophotometer equipped with a heated quartz tube. This procedure has been described previously.⁴

Inorganic arsenic and methylated arsenic

The sample solution following alkaline digestion (3 cm³) was introduced to the fully automated continuous arsine generation system.

Hydrochloric acid (0.6 mol dm⁻³) and sodium borohydride solution (2.0 g per 100 cm³ of 0.2 mol dm⁻³ aqueous sodium hydroxide) were continuously pumped through the mixing coil of the arsine generator at 6 cm³ min⁻¹. The generated arsines were collected in a U-shaped tube and flashed into the gas chromatograph—mass spectrometer (GC MS) using selected ion monitoring (SIM) as previously reported.⁴ Inorganic arsenic (Inorg.As), methylated (MA), dimethylated (DMA) and trimethylated (TMA) arsenic compounds were identified and quantified as arsine, methylarsine, dimethylarsine and trimethylarsine.

RESULTS AND DISCUSSION

Arsenic compounds in marine organisms were divided into three groups, water-soluble, lipid-soluble and total arsenic. The water-soluble arsenicals were further classified into inorganic, methylated, dimethylated and trimethylated arsenic, and the lipid-soluble arsenicals were also classified into similar groups except inorganic arsenic. The results are summarized in Table 1.

Total arsenic

Of 60 specimens examined, 14 contained remarkably high concentration of total arsenic (over 30 μ g g⁻¹). Among these 14 specimens, seven were seaweeds, four were carnivorous gastropods and three were crustaceans. Attention regarding arsenic should be focused on these three types of marine organisms.

Table 1 The distribution of arsenic in marine organisms (as As $\mu g \ g^{-1})^a$

			Water-soluble	uble			Lipid-soluble	luble		Total
Diet	Species	Tissues	Inorg As	MA	DMA	TMA	MA	DMA	TMA	Arsenic
	Flankton	Whole	Ω (0)	0.02 (1.55)	0.31 (24.03)	0.62 (48.06)	ND (0)	0.10 (7.75)	0.20 (15.50)	1.29
	Phaeophyceae		į	į	9		į	,	į	
	<u> Laminaria Japonica</u>		2 €	Q €	30.48 (82.44)	1.07	⊇ €	0.14 (0.32)	2 2 8	44.25
	Hizikia fusiforme		1.47	Q R	33.01	3.86	Q R	ND ND	0.17	41.31
	•		(3.56)	(0)	(79.91)	(9.34)	<u>@</u>	(0)	(0.41)	
	Hizikia fusiforme		8.69	QN ®	17.68	0.36	N Q	Q «	QN 9	36.07
	Ecklonia cava		(24.09) ND	() () ()	(49.02) 12.59	(1.00)	€ £	€ £	(e) F	33.05
			9	9	(38.09)	(21.91)	9	9	9	
	Undaria pinnatifida		ND	N	2.74	0.34	Q	4.75	ND	38.27
			(0)	(0)	(7.16)	(0.89)	0	(12.41)	(0)	
	Ishige okamurai ^b		ND	S N	0.09	ND	R	ND	ND	1.48
			(0)	(0)	(0.08)	(0)	0	(0)	0	
	Rhodophyceae									
	Porphyra tenera ^c		N N	Ω	47.39	0.83	ND	0.55	ΩN	69.85
			<u>(</u> 0)	0	(67.85)	(1.19)	9	(0.79)	9	
	Gelidium amansii		ND	Q	0.56	0.10	N	QN	ND	1.78
			(0)	9	(31.46)	(5.62)	9	0	0)	
	Gloiopeltis tenax ^c		ΩN	Q.	0.10	N ON	N	0.23	N ON	35.36
			©	(0)	(0.28)	()	0	(0.65)	<u>(</u>	
	Hypnea charoides ^h		ND	Q Q	0.13	R	ND	0.40	N	7.87
	٠		<u>(</u> 0	0	(1.65)	(0)	<u>(</u>	(5.08)	(0)	
	Chondrus ocellatus		ND	Q	0.40	ND	R	0.80	ND	15.86
			()	©	(2.52)	()	<u>(</u> 0	(5.04)	<u>(</u>)	
	Chlorophyceae		í	9		\ \	í	ğ	į	,
	Utva sp.		<u>S</u> (2 6	01.2 (2)	0.50	O S	Q (a S	5.65
			<u>(</u>	<u>e</u>	(57.53)	(13.70)	<u>9</u>	9	9	
Plankton	Demospongia	1. Hz	ç	ć	9	,	į	Ę	Ş	90
	Hauchonaria okaaai	w noie	0.10	(3.21)	9.38	3.46 (22.64)	g 6	g (e	Ž (9	13.28
	Halichondria japonica	Whole	QN 6	0.08	0.10	0.29	0.05	0.17	0.04	0.94
			€	(0.51)	(10.04)	(50.05)	(20.0)	(18.09)	(4.20)	

_
\boldsymbol{z}
w)
-23
~
. ~
.~
2
72
O
_
ت
_
_
e I (
je 1 (
ble 1 (
able 1 (
able 1 (
Table 1 (

Diet Plankton							omios-pidra	Jun.		1001
Plankton	Species	Tissues	Inorg As	MA	DMA	TMA	MA	DMA	TMA	Arsenic
	Scyphozoa Aurelia aurita	Whole	0.12 (26.09)	0.01	0) Q(0)	0.12 (26.09)	R ©	ND (0)	ND (0)	0.46
Omnivorous and herbivorous	Echinoidea Pseudocentrotus depressus	Ovary Viscera	ND (0) 0.48	ND (0) 0.02	0.58 (18.59) 0.85	1.83 (58.65)	0.02 (0.64) 0.02		0.03 (0.96) 0.41	3.12
	Anthocidaris crassispina	Ovary Viscera	(12.06) ND ND (0) ND Q (0)	(0.50) ON (0.50) ON (0.50) ON (0.50)	(21.36) 0.04 (2.99) 0.08 (2.23)	(24.12) 0.45 (33.58) 1.21 (33.70)	(0.50) ND ND ND (0) (0)	(24.37) 0.07 (5.22) 0.09 (2.51)	(10.30) ND (0) 0.12 (3.34)	3.59
Carnivorous	Asteroidea Asterina pectinifera	Ovary Viscera	0 (0) 0 (0) 0 (0)	Q (Q Q)	0.01 (0.53) 0.02 (1.54)	1.75 (93.08) 1.18 (90.77)	Q (0) Q (0)	0.01 (0.53) 0.05 (3.85)	0.07 (3.72) 0.02 (1.54)	1.88
Detritus	Holothuroidea Stichopus japonicus	Muscle	QN (0)	ND (0)	1.22 (5.21)	13.28 (56.68)	ND (0)	ND (0)	0 (O	23.43
Carnivorous	Cephalopoda Todarodes pacificus	Muscle Viscera	Q (9) Q	0.02 (0.25) ND	0.02 (0.25) 0.07	4.48 (56.35) 2.31	O O O	ND (0) 0.01	ND (0) 0.54	7.95
Plankton	Bivalvia Crassostrea gigas	Whole	QN (9)	Q Q Q	0.17	6.15 (61.81)		0.17	0.43	9.95
	Myilus edulis" Patinopecten yessoensis	Whole Muscle Viscera	0 0 0 0 0 0 0 0 0 0	Q Q Q Q Q	0.07 (1.61) ND (0) 0.04 (5.13)	2.01 (46.10) 0.79 (40.93) 0.11 (14.10)	R @ R @ R @	0.16 (3.67) 0.08 (4.15) 0.08	0.02 (0.46) 0.02 (1.04) 0.02 (2.56)	4.36 1.93 0.78

Herbivorous

1.91	6.82	1.02	1.31	7.96	1.08	1.64	1.6	3 28		3.53		10.08	07.71	07:71	13.46		125.92		86.58	28 73	,	5.96		123.79		130.30		61.61		153.00	
0.11	(5.70) 0.30 (4.40)	€ €	0.01	Q 6	Q (0.27	(16.46) 0.02	(1.22)	(1.22)	0.01	(0.28)	0.01	(0.10)	0.02	, Q	0	ND	()	0.03	(0.03)	(0.03)	R	(0)	0.03	(0.02)	0.35	(0.27)	2.73	(4.43)	1.68	(1.10)
0.18	(7.42) 0.31 (4.55)	QX €	0.15	0.20	0.13	0.32	(19.51) 0.14	(8.54)	(8.84)	0.07	(1.98)	0.20	(1.98)	0.06	0.22	(1.63)	0.09	(0.01)	0. 4	(0.51)	(0.80)	90.0	(1.01)	0.08	(0.06)	2.80	(2.15)	0.42	(0.68)	1.47	(0.96)
Q é	e g e	Q €	0.04	0.04	Q e	N N	(0) 0.02	(1.22)	(0.61)	0.01	(0.28)	0.05	(0.20)	€ €	R	0	Ω	©	0.03	(0.03)	(0.05)	0.01	(0.17)	0.03	(0.02)	0.21	(0.16)	Q	()	ND	0
1.03	(53.33) 4.19 (61.44)	0.20	0.24	1.90	0.24	0.36	(21.95) 1.29	(78.66)	(43.29)	2.75	(77.90)	8.49	(84.23)	(97.57)	11.65	(86.55)	90.39	(71.78)	83.32	(96.23)	(40.18)	4.16	(08.69)	98.601	(88.75)	122.43	(93.96)	51.66	(83.85)	114.45	(74.80)
0.33	(17.26) 1.11 (16.28)	0.17	0.10	1.97	0.11	0.21	(12.80) 0.13	(7.93)	(17.07)	0.17	(4.82)	0.55	(5.46)	0.00	0.15	(1.11)	1.32	(1.05)	1.43	(1.65)	(1.83)	0.68	(11.41)	1.98	(1.60)	1.4	(1.11)	3.99	(6.48)	2.81	(8.37)
Q 6	2 2 3	0.01	<u>Q</u> 6	0.04	Q 6	Q.	(0) 0.03	(1.83)	(0.30)	0.01	(0.28)	0.05	(0.20)	€ €	0.01	(0.01)	0.07	(0.00)	0.12	(0.14)	9	ND	0)	0.13	(0.11)	QN	(0)	0.42	(0.68)	1.89	(1.24)
Q 6	2 2 3	a e	2 g	Q 6	Q e	e e	() () () () () () () () () () () () () ((e) E	<u> </u>	R	0	S	e 5	⋛ €	R	<u>(</u>	ND	(0)	Ω	e S	9 6	S	0	ΩN	9	S	(0)	ND	<u>(</u>	R	(0)
Whole	Whole	Muscle	Muscle	Viscera	Muscle	Viscera	Muscle	Viccera	4 ISCCI &	Muscle		Viscera	2	Muscie	Viscera		Muscle		Viscera	Mussels	aracmini .	Viscera		Muscle		Viscera		Muscle		Viscera	
Meretrix lusoria ^c	Tapes philippinarum	Gastropoda Aplysia kurodai ^b	Nordotis discus		Sulculus supertexta		Batillus cornutus			Omphalius pfeifferi				Charonia saunae			Kellettia lischkei			d	mapana monasiana			Reishia bronni				Babylonia japonica ^c			

_
€
0
3
. 5
#
্
ು
9
2
e 1 (c
ble 1 (c
able 1 (c
Table 1 (c

			american american	, inc.			ame ada			
Diet	Species	Tissues	Inorg As	, MA	DMA	TMA	MA	DMA	TMA	Arsenic
Carnivorous	Crustacea									
	Oratosquilla oratoria	Muscle	Ω	ND	0.05	11.01	ND	0.01	QN	-13.60
			(0)		(0.37)	(96.08)	<u>(</u>	(0.07)	©	
		Viscera	0.36		91.0	10.80	Q	0.16	ND	17.64
			(5.04)		(0.91)	(61.22)	9	(0.91)	(0)	
	Scyllarus cuttrifer	Muscle	Ð		0.16	23.00	Ω	0.02	ND	24.11
			(0)		(0.66)	(95.40)	(0)	(0.29)	(0)	
	Penaeus japonicus	Muscle	ND		0.47	59.87	Ν̈́Ω	0.12	N	65.83
			<u>(</u> 0		(0.71)	(90.95)	<u>(</u>	(0.18)	<u>(</u>	
	Penaeus semisulcatus	Muscle	NO		QN	3.42	Q	0.03	S	5.83
			<u>(</u>		((58.66)	9	(0.51)	9	
	Panulirus japonicus	Muscle	Ω		0.14	42.22	Ð	0.02	0.10	48.94
			()		(0.29)	(86.27)	9	(0.10)	(0.20)	
	Portunus trituberculatus	Muscle	QN		0.03	1.40	ΩN	0.03	0.11	99.9
			(0)		(0.45)	(21.02)	(0)	(0.45)	(1.65)	
	Ranina ranina	Muscle	ND		0.32	21.04	Q.	0.20	2.25	25.01
			<u>(0</u>		(1.28)	(84.13)	9	(0.80)	(00.6)	
	Plagusia dentipes	Muscle	ND		0.15	44.99	Q.	QN	ND	46.87
			(0)		(0.32)	(65.66)	0	(0)	(0)	
Plankton	Fish									
	Engraulis japonica	Muscle	N Q	0.02	0.01	2.01	S	0.01	ND	2.33
				(2.15)	(0.43)	(86.27)	9	(0.43)	0	
		Viscera		0.16	0.16	2.43	0.01	0.01	0.01	2.81
			9	(5.69)	(5.69)	(86.48)	(0.36)	(0.36)	(0.36)	
	Etrumeus micropus	Muscle	Ð	ND	0.02	89.0	Q	QN	ND	1.30
			<u>(</u> 0	<u>0</u>	(1.54)	(52.31)	0	0	0	
		Viscera		Q.	0.15	2.87	0.07	0.14	60.0	3.48
				(0)	(4.31)	(82.47)	(2.01)	(4.02)	(2.59)	
	Sardinops melanosticta	Muscle	ND	0.01	0.01	4.07	QN	ON	0.04	4.51
			<u>(</u> 0	(0.22)	(0.22)	(90.24)	(0)	0	(0.89)	
		Viscera		0.01	0.03	0.17	0.01	0.10	ND	0.36
			9	(2.78)	(8.33)	(47.22)	(2.78)	(27.78)	(0)	
Herbivorous	Prionurus microlepidotus	Muscle	ND	Ω	QN	0.03	ON	QN Q	QN	0.10
			<u>(</u> 0	9	(0)	(30.00)	0	<u>(</u> 0)	<u>@</u>	
		Viscera		ND	0.07	0.13	ΩN	0.03	N	1.08
				<u>(</u>	(6.48)	(12.04)	9	(2.78)	9	
	Siganus fuscescens	Muscle	ND	ΩN	ND	0.03	ND	ND	ND	0.47
			0	9	(0)	(6.38)	0	<u>(</u> 0	<u>(</u> 0	
		Viscera	ND	0.01	0.36	0.10	N	0.05	ND	2.82
			(0)	(0.35)	(12.77)	(3.55)	9	(1.77)	0	

Carnivorous	Trachurus Japonicus	Muscle	QN		0.01		0.02	0.05	0.02	1.36
			(0)		(0.74)		(i.47)	(1.47)	(1.47)	
		Viscera	N		0.21		0.05	90.0	0.01	2.23
			0		(9.42)	_	(2.24)	(2.67)	(0.45)	
	Chrysophrys major	Muscle	ND		0.01		ND	0.02	S.	1.21
			9		(0.83)		9	(1.65)	(0)	
		Viscera	ND		90.0		QN	0.20	R	1.73
			(0)		(3.47)		9	(11.56)	©	
(Omnivorous)	Acanthogobius flavimanus	Muscle	ND		QN QN		NO	QN	ND	0.74
			<u>(</u>		<u>(</u>		(0)	(0)	(0)	
		Viscera	ND		0.05		ND	0.05	ND	1.73
			(0)		(5.88)		9	(5.88)	(0)	
	Reinhardtius hippoglossoides ^c	Muscle	ND	ND	0.02	1.56	QN	0.01	QN	1.91
			(9)		(1.05)		(0)	(0.52)	(0)	
	Oplegnathus fasciatus	Muscle	R		0.02		R	0.05	0.27	9.38
			(0)		(0.75)		<u>(</u>	(0.53)	(2.88)	
		Viscera	ND		0.05		N Q	0.04	0.41	5.02
			(0)		(1.00)		(0)	(0.80)	(8.17)	
	Pleuronichthys cornutus	Muscle	ND		0.03		ND	0.04	0.13	2.30
			(0)		(1.30)		(0)	(1.74)	(5.65)	
		Viscera	QN Q		1.00		ND	0.27	0.19	8.08
			<u>(</u>		(12.38)		0	(3.34)	(2.35)	
	Auxis tapeinosoma	Muscle	ND ND		0.01		ND PD	0.01	0.05	0.32
			(O)		(3.13)		9	(3.13)	(15.63)	
		Viscera	ND		0.02		ND	0.04	0.05	1.38
			(0)		(1.45)		(0)	(2.90)	(3.62)	
	Parapristipoma trilineatum	Muscle	ND		Q.		ΩN	ND	90.0	0.62
			0		(0)		()	(0)	(89.68)	
		Viscera	ND		0.12		ND	0.30	0.71	2.16
			(O)		(5.56)		(0)	(13.89)	(32.87)	
	Sphyraena schlegeli	Muscle	ND Q		0.01		ND	90.0	0.04	0.88
			(0)		(1.14)		(0)	(6.82)	(4.55)	
		Viscera	ND		0.05		ND	0.03	0.07	1.31
			<u>(0)</u>		(3.82)		<u>(</u> 0	(2.29)	(5.34)	
	Neoditrema ransonneti	Muscle	ND		0.05		ND	0.04	80.0	0.72
			(0)		(6.94)		(0)	(5.56)	(11.11)	
		Viscera	ND		0.15		ND	60.0	0.28	1.54
			(0)		(9.74)		0	(5.84)	(18.18)	
(Omnivorous) S	Stephanolepis cirrhifer	Muscle	ND		0.04		ΩN	ND	0.20	4.35
			(0)		(0.92)		<u>(</u>	(0)	(4.60)	
		Viscera	<u>R</u>		0.20		ND	0.16	0.46	9.28
			(0)	- 1	(2.16)	(74.03)	(0)	(1.72)	(4.96)	

Abbreviations: Inorg As, inorganic arsenic; MA, methylated arsenic; DMA, dimethylated arsenic; TMA, trimethylated arsenic; ND=not detectable.

^aThe ratio (%) of each form of arsenic to total As is given in parentheses. ^bCollected at Shimonoseki. ^cCommercially available. Other samples were caught at the Miura Peninsula.

Most of these representative edible seaweeds accumulated arsenic, and Phaeophyceae especially contained high levels. Of six Phaeophyceae, five contained over 30 μ g g⁻¹ of total arsenic.

The arsenic content of carnivorous gastropods was outstandingly high, e.g. 125.9, 123.8 and 61.6 μ g g⁻¹ of total arsenic were observed from muscle tissue of *Kellettia lischkei*, *Reishia bronni* and *Babylonia japonica* respectively.

The arsenic content in plankton-feeding bivalves and herbivorous gastropods, which feed on marine algae containing high amounts of arsenic, was fairly low compared with that in carnivorous gastropods. This tendency is quite in agreement with the report of Shiomi *et al.*⁵ They estimated that this distinction was due to metabolic differences between the species and to the differences in excretion speed between the carnivorous gastropods and the other shellfish.

Water- and lipid-soluble arsenic

Most of the arsenic in the marine organisms was in the water-soluble fraction and in methylated form. Lipid-soluble arsenic was found ubiquitously, but its content was fairly low compared with water-soluble arsenic. Maher¹ reported that lipid-soluble arsenic was significantly higher in plankton feeders than that in herbivorous and carnivorous species, but it was difficult to obtain the same conclusion in this work. The water-soluble trimethylated arsenic was widely spread in marine animals, and was the main component of water-soluble arsenic. It was thought this trimethylated arsenic was likely to be arsenobetaine or trimethylarsine oxide [(CH₃)₃AsO], since both compounds released trimethylarsine by the alkaline digestion and subsequent reduction with sodium borohydride, but the other trimethylated organic arsenical, i.e. arsenocholine [(CH₃)₃As⁺CH₂CH₂OH] does not give trimethylarsine by the procedure.4

We have reported that the toxicities of arsenobetaine and trimethylarsine oxide was very low, their LD_{50} values in mice being more than 10 g kg⁻¹ and 10.8 g kg⁻¹, respectively.^{6,7} On the other hand, water-soluble trimethylated arsenic in the edible tissues of 42 species of marine animals eaten as daily food varied between 6.38 % and 97.57 % (mean 64.97 ± 24.31 SD %) of the total arsenic. It must be

significant to consider the safety of arsenic-containing marine animals as foods.

The contents of water-soluble dimethylated arsenic were specifically high in seaweeds. It was thought this dimethylated arsenic was a degradation product of the alkaline digestion of arseno-sugars⁸ having a (CH₃)₂AsO— moiety.

The lipid-soluble dimethylated arsenic was a major component of lipid-soluble arsenic in all marine organisms. The chemical form of this dimethylated arsenic still remains to be identified.

The water-soluble inorganic arsenic was almost at the undetectable level in most marine organisms except *Hizikia fusiforme* (Phaeophycea).

We also report, in another paper that, the LD₅₀ value of inorganic arsenic against mice is about 50-fold lower than that of methylarsonic [CH₃AsO(OH)₂] acid and dimethylarsinic [(CH₃)₂AsOOH] acid and about 300-fold lower than that of trimethylarsine oxide.⁷ The low content of inorganic arsenic in all marine organisms examined is desirable from the viewpoint of food hygiene.

Fish are in higher trophic levels, and may feed on arsenic-rich seaweeds, gastropods and so on. Despite that, the arsenic content of fish was generally low (under $10~\mu g~g^{-1}$). Judging from our work, which showed that arsenic in *H. fusiforme* ingested into the human body was rapidly excreted in urine as the methylated forms, ⁹ fish are likely to have a metabolic pathway to excrete arsenic rapidly.

REFERENCES

- 1. Maher, W A Comp. Biochem. Physiol., 1985, 82C: 433
- Braman, R S, Johnson, D L, Foreback, C C, Ammons, J M and Bricker, J L Anal. Chem., 1977, 49: 621
- Edmonds, J S and Francesconi, K A Nature(London), 1977, 265: 436
- Kaise, T, Yamauchi, H, Hirayama, T and Fukui, S Appl. Organomet. Chem., 1988, 2: 339
- Shiomi, K, Shinagawa, A, Igarashi, T, Hirota, K, Yamanaka, H and Kikuchi, T Bull. Jap. Soc. Sci. Fish., 1984, 50: 293
- 6. Kaise, T, Watanabe, S and Itoh, K Chemosphere, 1985, 14: 1327
- 7. Kaise, T, Yamauchi, H, Horiguchi, Y, Tani, T, Watanabe, S, Hirayama, T and Fukui, S Appl. Organomet. Chem. (submitted)
- Edmonds, J S and Francesconi, K A Nature (London), 1981, 289:
- Hirayama, T, Sakagami, Y, Nohara, M and Fukui, S Bunseki Kagaku, 1981, 30: 278